An in-depth security evaluation of the Nintendo
DSi gaming console

Abstract. The Nintendo DSi is a handheld gaming console released by
Nintendo in 2008. In Nintendo’s line-up the DSi served as a successor
to the DS and was later succeeded by the 3DS. The security systems of
both the DS and 3DS have been fully analyzed and defeated. However, for
over 14 years the security systems of the Nintendo DSi remained standing
and had not been fully analysed. To that end this work builds on existing
research and demonstrates the use of a second-order fault injection attack
to extract the ROM bootloaders stored in the custom system-on-chip
used by the DSi. We analyse the effect of the induced fault and compare
it to theoretical fault models. Additionally, we present a security analysis
of the extracted ROM bootloaders and develop a modchip using cheap
off-the-shelf components. The modchip allows to jailbreak the console,
but more importantly allows to resurrect consoles previously assumed
irreparable.
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1 Introduction

The Nintendo DSi is a handheld gaming console released by Nintendo in 2008.
It was designed as a small upgrade to its predecessor, the Nintendo DS, adding
extra ‘multimedia’ features such as two cameras and a web browser. These con-
soles still have active homebrew communities of people making their own self-
published games and programs. Additionally, these communities are interested
in reverse-engineering the publicly undocumented hardware. This is done to
develop more precise emulators, write code that is capable of rendering more
spectacular graphical effects, or simply as a reason in and of itself.

The security systems of the DS [6] and the 3DS |30l |8, [31] have been fully
analyzed and defeated. This has not yet been the case for the DSi.

The goal of this research is to analyze the previously unexamined parts of the
security system of the Nintendo DSi, more specifically, its boot ROMs. This would
allow for better hardware preservation and brick recovery: current exploits [17]
rely on the second-stage bootloader residing in eMMC (Embedded MultiMedia
Card) memory existing and having a correct digital signature. This eMMC, a
Samsung moviNAND chip [16], has a low erase-write-cycle lifetime, and might be
affected by bugs in the wear-levelling management firmware (this is the case for
other eMMCs made by the same manufacturer in that era [24]). Simply replacing
the eMMC chip with another would not fix the situation, as the console uses the
eMMC’s CID (Card IDentifier, a uniquely identifying number of every eMMC



memory) to derive cryptographic keys used to encrypt the FAT32 filesystem [16].
Furthermore, this work can be used as inspiration on how to tackle other, similar
targets.

This paper is structured as follows: section [2| provides background informa-
tion and covers related work. In sections [3| and [} we show how the boot ROMs
can be extracted. Section [f] reflects on the fault injection campaign and pro-
poses an explanation of what type of faults actually occur when performing the
readout attack. A security analysis is then performed in section [6} The results
of this analysis are used in section [7] to build a modchip capable of jailbreaking
the console. Section [8] then provides a conclusion.

1.1 Contributions

This work presents the following contributions: We extract the boot ROMs of the
DSi using a second-order EMFT attack. We then look into the security aspects of
these ROMs, completing the security analysis of the Nintendo DSi. Finally, we
develop a modchip able to jailbreak the system in its very first bootstage. This
modchip attack can be used to revive bricked consoles with a broken eMMC.

1.2 Responsible disclosure

We did not disclose our research results to Nintendo ahead of submission for
several reasons.

First, Nintendo appears to only accept vulnerability reports through their
HackerOne bug bounty program. At the time of writing Nintendo only accepts
submissions for the Switch console. Note that the 3DS (the DSi’s successor) is
explicitly listed as out of scopdfﬁecondly, by submitting a report through the
HackerOne program we would agree to not publish our findings, even if the
report is considered out of scope. Finally, Nintendo discontinued the DSEL and
no new game titles have been released since 20lfﬂ Due to the above factors,
vulnerability disclosure to the vendor is currently not considered.

2 Background and related work

This section gives an overview of the hardware of the Nintendo DSi, fault injec-
tion, and previous attacks on the DSi. These elements are necessary to under-
stand the attacks used in this work, and the current state-of-the-art regarding
DSi exploits.

! See mhttps://hackerone.com/nintendo/updates, https://archive.ph/Yh7YV.
2 The exact date is unclear. Nintendo never announced an official date when the DSi
would go out of support, instead changing the console’s status silently. The 3DS was
discontinued in 2020. 3 Crazy Train, a downloadable DSiWare title.
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2.1 The Nintendo DSi gaming console

The DSi is an interesting hybrid between the DS and 3DS: it keeps the former’s
CPU and GPU, while the peripherals, chipset, boot process and overall security
architecture resemble those of the 3DS much more closely.

The DSi, much like the DS, has two CPU cores, an ARM7TDMI and an
ARMY946E-S, typically shortened to respectively ARM7 and ARM9. The ARM7
is used for I/0O tasks and has exclusive access to many I/O peripherals, while the
ARMY is much faster and more powerful, and has exclusive access to the GPU.
It has SoC-internal SRAM specific to each separate CPU core with configurable
mapping options, and external DRAM shared between the two cores. These
CPUs can also communicate using a FIFO interface. Unlike the DS, it boots
from eMMC NAND, which contains the second-stage bootloaders (in raw eMMC
blocks) as well as the system menu and various apps (on an encrypted FAT32
filesystem). It has extra peripherals such as cameras and an SD card slot. More
information about the DS and DSi can be found in [14].

The DS only used symmetric-key Blowfish encryption without authentica-
tion, and a system menu residing in external flash without cryptographic pro-
tection mechanisms. This naturally lead to the proliferation of ‘flashcarts’ [6], on
which homebrew (and pirated) games can be loaded and played. Compared to
this, the DSi and 3DS both use a full secure boot chain using digital signatures
and AES encryption, from the first bootloader [8} 5] down to individual games
andapplications [26].

2.2 Fault injection

Fault injection is an attack method targeting the physical implementation of a
device, by actively tampering with its operation. By bringing one or more envi-
ronmental parameters (such as supply voltage, clock signal, incident electromag-
netic field, etc.) outside the operating range of the device for a short amount of
time, the target can be made to malfunction without crashing or shutting down.
After these parameters return to their normal range, the effects of this malfunc-
tioning can still propagate logically, possibly subverting the security properties
of the device [41} |1} |34]. Naturally, people have proposed countermeasures to
stop such attacks [2], resulting in an arms race betweenattackers and defenders.

Fault injection can be used to circumvent security checks [12], tamper with
cryptographic algorithmsto obtain secrets 9} [35],and even directly take control
over the execution flow of a processor [28, 37]. In thecontext of gaming con-
soles, this often translates to obtaining decryption keys [18| [10] and arbitrary
code execution capabilities in a high-privilege environment (e.g. a bootloader,
hypervisor, or security coprocessor) |11} 8].

2.3 Earlier work on the DSi

Interestingly enough, it was the 3DS of which the security system was fully bro-
ken first. From software exploits in the operating system |26] to bootloader‘unlocks’ [20].



Finally, the boot ROMs were extracted aswell [8], leading to the discovery of fatal
vulnerabilities |30, 31].

The ROM extraction method presented by derrek et al. is very relevant to this
work [8]. Their method relies on two quirks: SRAM is not cleared across resets,
and some exception vectors in the ROM are hardcoded to jump into SRAM.
Using fault injection, it is possible to cause an undefined instruction exception
early during boot ROM execution. By first poisoning SRAM with a payload,
resetting the SoC and then quickly injecting faults, an attacker can thus obtain
code execution while the boot ROMs are executing [8]. Once ROM images had
been obtained, it became clear that the boot ROMs contain a vulnerability in
the PKCS#1 ASN.1 parsing code [31].

Meanwhile, the DSi had survived earlier attempts at breaking into its security
system, and still stood strong at the time the 3DS was released. For example,
Micah Elizabeth Scott built a setup to trace all DRAM accesses [32], but this
only lead to exploits in specific games, not in the full system. As DRAM is
initialized only by the second-stage bootloader before loading the System Menu,
DRAM probing could not be used against any bootloader of the DSi. In addition,
the SCFG control registers |[15] are used to mitigate such attacks as well: they can
be used to prohibit the CPU from accessing I/O registers related to eMMC, the
SD card, WiFi, etc., until a reboot happens. This way, a cartridge-based game
cannot access the eMMC filesystem, for example.

However, as the 3DS included a DSi backwards compatibility mode (including
emulating the DSi bootchain starting from the second-stage bootloader), the
defeat of the 3DS opened a new avenue for analyzing its predecessor. As it was
now possible to decrypt and reverse-engineer the DSi’s second-stage bootloader,
a vulnerability was discovered here [17], allowing for persistent arbitrary code
execution capabilities, at cold boot.

One downside of this jailbreak is that it targets the second-stage bootloader,
rather than the ROM bootloader. This means the console’s eMMC memory still
needs to contain a valid cryptographic signature along with an intact second-
stage bootloader. As already mentioned in section [I} this eMMC memory is
prone to failure, rendering the console unable to boot.

3 ARMT7 ROM extraction

The 3DS ROM extraction method described in the previous section can be used
to extract one of the two boot ROMs of the Nintendo DSi. This section describes
how we extracted this boot ROM, and what information is contained within.

3.1 Method

The method used here is similar to the one used for the 3DS. SRAM contents
persist across resets, and the ROM is hardcoded to jump into SRAM when an
undefined instruction exception occurs. By first filling SRAM with a payload,
then resetting the SoC and injecting a fault, an attacker can obtain arbitrary
code execution capabilities on the ARM?7.
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3.2 Practical considerations

It was already theorized to be possible to extract the ARM7 boot ROMs using
fault injection, though earlier attempts using VFI led to no results [23,|7]. Instead
we opted to use EMFI here, as it seemed more practical with the wire-bond
BGA package of the SoC, and the complex layer stackup and connection layout
of the power supply rails on the PCB. The used fault injection setup consists
of a NEWAE ChipSHOUTER as EMFT injector, and a NEWAE ChipShover as
positioning stage.

The jailbreak exploit described in section [2.3|is a prerequisite for this attack.
It is used to run custom code that fills SRAM with payload code, from which
the attack can be performed. More specifically, a region of memory called WiFi
RAM is used to store the ROM extraction payload. This RAM serves as a queue
for WiFi packets, and is untouched by any bootloader. It is thus guaranteed to
survive during execution of the boot ROM. The rest of SRAM is filled with NOP
sleds (valid as both ARM and Thumb code) that jump to the payload in WiFi
RAM.

However, this setup comes with a few downsides. EMFI requires moving the
WiFi daughterboard and shielding that are normally placed above the SoC and
DRAM. However, the SPI bus of the daughterboard does need to remain con-
nected, as it contains a SPI flash memory used by the boot ROM (cf. section.
It is required to exist in order for the system to reach the state where the second-
stage bootloader jailbreak attack is executed. This is worked around by moving
the daughterboard to the side, and soldering thin wires to reconnect the SPI
bus. A photo of the modified target can be found in Figure

The Raspberry Pico was chosen as the controller for the setup. It is fast, can
be controlled on a low level, supports USB as a communication method, and
its PIO state machines allow for fast and precise control of glitch pulses. These
pulses are sent to the ChipSHOUTER using signals from the target as trigger
inputs. It is able to assert the reset line of the target, and watches the GPI0330
and CAM_LED lines as trigger and success signals. The Pico also acts as a new
device on the target’s I2C bus as a backchannel for printf-style debugging of
payloads. A desktop computer sends FI parameters to the Pico (using a USB-
UART connection) and controls the ChipShover positioning.

To find the optimal combination of fault injection parameters, a divide-and-
conquer approach is used. A parameter sweep determines the probe positioning,
coil voltage and pulse width to raise an undefined instruction exception in the
ARMY. This sweep is done using a test payload injected using the attack from
[17] that tries to to replicate the situation when the boot ROM is running.
For these tests, the ARM7 runs a test payload that fills SRAM with payload
code and sets up the undefined instruction exception handler to jump to it. The
payload signals success using the CAM_LED line whenever an undefined instruction
exception occurs, while sending out a CPU register dump over 12C. The optimal
timing to inject a fault is then discovered by simply sweeping through the entire
range (between reset release and the first activity on the eMMC bus), using a
payload that performs the ARM7 ROM extraction attack.



(a) The modified DSi with a relocated
WiFi daughterboard (A). This config-
uration makes it possible to target the
SoC using EMFI. The large square IC
next to this connector footprint is the
SoC (B). Next to the SoC are the

(b) A photo of the EMFI setup to ex-
tract the boot ROM. The target DSi
sits on the stepper table, with a Chip-
SHOUTER hanging above. In front
sits a breadboard with a Raspberry
Pico and supporting components (e.g.
a level shifter), under which a logic an-

DRAM (C d eMMC (D).
(C) and e (D) alyzer is placed to inspect the whole

system.

Fig. 1: Photos of the modified target and the EMFI setup

3.3 Results and analysis

The attack worked, and the ARM7 boot ROM has been extracted successfully.
It was possible to obtain a dump approximately once every 90 seconds, with one
attempt made per second.

Static analysis of this boot ROM reveals that it mostly contains driver code
for various non-volatile memories. The second-stage bootloader is read from one
of these memories, depending on a configuration byte in SPI flash. Additionally,
it became clear that the cryptographic verification of the second stage bootloader
is performed by the ARM9 processor. Communication between the two cores
happens using the FIFO interface. The ARM9 ROM image is thus needed to
perform a security analysis of the system.

Nevertheless, the ARM7 ROM contains some information that will be useful
later on. Right before jumping to the code of the second-stage bootloader (after
the latter has been decrypted and verified by the boot ROMs), both ROMs
are completely detached from the system memory buses. More specifically, the
ARM7 ROM writes to an MMIO register to disable both ROMs , while the
ARMY9 waits for this transaction to be completed.
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4 ARM9 ROM extraction

In this section, a method of extracting the ARM9 boot ROM is described. This
method, using a second-order fault injection attack, is then used in practice.

4.1 Method

The fault injection exploit used to extract the ARM7 ROM can be used as a
starting point. Once the console boots, a first fault is injected to take control of
the ARMY. The payload then continues booting normally, but ‘forgets’ to detach
the ROMs from the system buses. This will leave the ARM9 stuck in an infinite
loop (cf. section. A second fault can be injected to break the ARM9 core out
of this loop and continue the boot process normally, while both ROMs are still
readable. As soon as execution ends up in an applet or game (running custom
code inserted using a pre-existing exploit such as [17]), the ROM can be read
out and e.g. be saved to the SD card.

4.2 Practical considerations

The method described above is a second-order fault injection attack, i.e. it re-
quires two successful faults. While such attacks tend to be seen as difficult to
pull off (e.g. the authors of [38] call it ‘unrealistic’), and countermeasures rarely
exist, they have already been performed successfully before [4, 13, 10].

The same EMFT setup used to extract the ARM7 ROM image is used here as
well. Similarly, the ARM7 parameter sweeps for the ARM7 takeover part of the
ARM9 ROM extraction attack can be reused as-is. Only the probe positioning,
coil voltage and pulse width for breaking the ARM9 out of an infinite loop still
needs to be determined. A test payload is used here as well: the ARM9 is placed
in an infinite loop, while timer interrupts signal a ‘heartbeat’ message to the Pico
to detect crashes. It is, just like for the ARM7 parameter sweep, injected using
the Unlaunch exploit. Once these steps have been completed, the parameters
can be combined for the final boot ROM extraction attack. A photo of the setup
is provided in Figure

4.3 Results

The attack worked, and the ARM9 boot ROM has been extracted successfully.
The timeline of a successful exploit is shown in Figure 2] The success rate was
high enough to obtain a dump once every ~ 90 minutes.

5 Fault model analysis

This section looks into the faults injected in the previous sections, and proposes
an explanation of the real faults occurring (rather than the ones aimed for in
section [3.1)), based on observations made during the parameter search.



Fig. 2: Logic analyzer capture of the ARM9 boot ROM extraction process. Some
time after reset release, a first fault is injected (1). The ARMT payload then
starts mimicking the regular boot ROM execution (2-4). After this, the SoC
hangs as the ARM9 waits for the ROMs to be locked away (5), which the ARM7
payload does not do. After injecting a fault into the ARM9 successfully (not
pictured on the GLITCH_OUT line), the console continues booting (6) and the
result is transferred over 12C (7).

5.1 Method

Observations come from two sources. One source is the influences of variations
in fault parameters during the parameter search. The second is the state of the
ARMY7 CPU right after takeover: the payload used dumps the CPU and SCFG
MMIO registers to the I12C backchannel.

5.2 Observations

One expects a fault on the ARM7 to corrupt an instruction, turning it into an
undefined opcode. When decoding such an instruction, the CPU will then jump
to the undefined instruction exception (UIE) handler, where the payload resides.
At one point, the boot ROM clears and reinitializes the UIE vector. The fault
must thus be injected before this point in time.

First of all, some irregularities occur in the register dumps. The dump would
normally show a link register (1r, r14) pointing to an instruction that gets ex-
ecuted before the clearing of the UIE vector. Similarly, the mode field of cpsr
would indicate the CPU to be in undefined instruction mode (0x1b) when run-
ning the payload. However, 1r sometimes points to code running after the UIE
vector clear occurs. Similarly, the cpsr mode field is equal to 0x1f (system mode)
most of the time, rather than 0x1b.

Secondly, the fault timing seems to have a rather large window in which
successes are observed. More specifically, the window starts with a high peak in
the success rate, after which a long trail can be seen. This is shown in Figure
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A third interesting pattern emerges in the influence of the pulse injector coil
voltage (and thus H-field strength) on the success rate. As one would expect
(c.f. [25]), a threshold exists below which no faults will occur. However, when
increasing the voltage even further, the success rate seems to decrease.

Successful faults i.f.o. timing offset

251

204

15

10 4

# successful faults

o

T T T T T T T
106.075 106.100 106.125 106.150 106.175 106.200 106.225
Time since reset release (ms)

Fig. 3: Graph depicting the number of successful faults when attacking the ARM7
during boot ROM execution, in function of the time offset of the injected pulse.
It starts out with zero successes, peaks slightly before 106.1 ms, after which it
becomes much smaller again. Every possible moment was attempted 1400 times,
the peak thus corresponds to a success rate of about 2%.

5.3 Explanation

From the cpsr information, it is clear that the real fault mechanism is not
causing an UIE. Instead, a direct program counter corruption seems more likely.
As the rest of SRAM is filled with NOP sleds that jump to the payload, it is not
unlikely that a pc corruption would end up there.

The ‘long tail” of the success rate i.f.o. the fault timing confirms this. The
boot ROM clears SRAM upon starting up. The later the fault is injected (and
thus, the more SRAM has been cleared), the lower the chance of a pc corruption
ending up in the NOP sled.

Furthermore, the authors of [21] provide a possible explanation pointing to-
wards pc corruption as well: increasing the coil voltage ends up corrupting more
bits in an instruction word. This is desirable when trying to effect a large change
(needed for e.g. an UIE), but less so for smaller ones (e.g. changing the desti-
nation register into the program counter, while keeping the rest intact). If the
latter is what is needed instead of the former to cause successful faults and take
over the ARM7 CPU core, increasing the voltage is counterproductive, which is
what we observed.
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6 ARM9 ROM analysis

This section demonstrates how the security analysis of a boot ROM can be
conducted, and what vulnerabilities lie in the ARM9 boot ROM. As this is the
first work to reverse-engineer this ROM, we provide a functional description as
well, as a reference for others.

6.1 Method

To properly analyze the functioning of the boot ROMs, a combination of multiple
tools is needed. GhidraEI serves as a base for static analysis to discover possible
vulnerabilities. These are then tested in small ‘unit tests’ using Unicorn?] and
Python scripting. However, this environment does not suffice to emulate the
full boot procedure with both ARM cores active at the same time. To overcome
this, we extended the Nintendo DS emulator melonDS |E| to support booting from
the boot ROMs and enable debugging using GDB m This way, an exploit can be
tested in the full boot process, with instruction stepping and memory inspection.

6.2 Functional description

The boot ROMs load, decrypt and verify the second-stage bootloader as follows:
first, the ARMTY reads configuration bytes from an external SPI flash. Depending
on this configuration, it will boot from either eMMC or the SPI flash itself. If a
special button combination is pressed, the game cartridge will be booted from
instead, just like the 3DS [31]. Then, a 512-byte boot header is read from the
boot medium. This header contains information on the offset, size, load address,
SRAM mapping configuration, and optional compression flags of the second-
stage payload binaries, as well as an RSA-1024 signature. The ARMY7 sends this
boot header to the ARM9 over the FIFO interface, and the ARM9 then verifies
the RSA signature, sending the result back to the ARM7.

The RSA signature format is rather peculiar: instead of using PKCS#1, a
custom format is used. The RSA signature appendix contains the hashes of the
boot header and of the decrypted second-stage binaries, a partial AES key, and
a hash of all the previous items concatenated. The RSA public key resides in the
ARM9 ROM. PKCS#1 vl-style padding is used, but without ASN.1 encoding.
A diagram of the boot header and signature formats is shown in Fig. [4

The payload binaries are encrypted using AES-128-CTR. The key is derived
from two 128-bit partial keys (keyX and keyY). keyX is hardcoded in the boot
ROM, keyY comes from the RSA signature appendix as described above. The IV
is 96 bits in size, and consists of the corresponding binary’s size repeated three
times (the first time as-is, the second time its binary complement, the third time
its two’s complement).

4 https://ghidra-sre.org/ ® https://www.unicorn-engine.org/
5 https://melonds.kuribo64.net/ * Available at
https://github.com/melonDS-emu/melonDS/pull/1583
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Using this construction, the RSA public key (stored in the protected half of
the ARM9 boot ROM) is needed to obtain the AES key for decrypting the second
bootstage. Nintendo leaked the RSA public key, keyX and keyY by having the
3DS be less secure than its predecessor, as described in Furthermore, with
any system update, Nintendo can also change this keyY in the RSA signature
appendix, rendering previous leaks useless as long as the public key remains
secret.

The ARMY7 then sets up its AES accelerator peripheral and DMA engine to
read and decrypt the first payload (i.e. the ARMY binary of the second-stage
bootloader). The plaintext is then sent to the ARM9, which then calculates its
SHA-1 hash and compares it against the corresponding one in the RSA signature
appendix. The procedure is repeated for the second payload (the ARM9 binary).
Once the two hashes have been checked, the ARM9 communicates back the result
to the ARM7. If everything verified correctly, both ROMs then jump to their
respective second-stage binaries.

Both second-stage payloads can optionally be compressed using an LZ vari-
ant, this can be configured separately per payload binary. Normally, the payload
is sent by writing it to a specific SRAM bank that can be mapped privately
between both CPU cores. However, when this compression option is used, an-
other option becomes available. It allows the data to be sent over the FIFO,
and the ARM9 then decompresses it upon reception (instead of the ARMY7 after
reading from its AES accelerator). This new option applies to both binaries at
once. The compression options are ignored when booting from a game cartridge,
such payloads are always uncompressed. This implementation detail will become
relevant in section [

6.3 Vulnerabilities

The cryptography of the ROMs seems rather interesting, with its custom sig-
nature format and use of primitives that have now become outdated [3} [22].
However, no straightforward way of forging such a signature appears possible,
without either factoring the modulus or creating a second preimage of a SHA-1
hash. Only collision attacks against SHA-1 have been demonstrated in prac-
tice [36]. The method of deriving the AES IV could be problematic: if both bi-
naries are equal in size, the CTR keystream would be reused, making decryption
much easier. Though, this does not occur in practice. Secondly, the verification
code never confirms whether the padding and data block together span the entire
128-byte RSA message. This again does not spell doom of the scheme, as the
data block itself is 116 bytes in size, and the padding must be at least 8 bytes.
This leaves 32 bits of data inside the RSA message that can be ignored. This on
its own is too little to give an adversary any significant practical advantage to
forge a signature.

The ROM software does not seem to include any ‘obvious’ vulnerabilities,
as (unlike the 3DS ROM) it performs no parsing. The boot header format is
a C struct with fixed offsets and sizes, and no ASN.1 encoding is used in the
RSA signatures. There seem to be a few oversights, though on their own they

11
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Fig. 4: Header format of the second bootstage and verification chain of the boot
ROM: the RSA signature’s message contains several hashes, not only for the
code of the next bootstage, but also of the header information, and for the other
information in the RSA message. Next to these hashes it also contains the partial
AES used to decrypt the next bootstage.

do not compromise the security of the system. The first one is that the return
value of the function checking the RSA signature padding is ignored, as shown
in Figure [5| Improper padding checks were exploited in the 3DS [31] by brute-
forcing an RSA signature with a corresponding appendix that triggers the bug.
However, the ‘hash of hashes’ used here (which is not present in the 3DS) makes
this computationally infeasible. The second oversight is that the payload binary
sizes and load addresses are never sanity-checked. This was also exploited for
the 3DS in a later stage of the jailbreak exploit [31]. The validity of these load
addresses rely entirely on the authenticity of the RSA signature.

One particular spot in the ARM9 ROM code seems to be particularly vul-
nerable to fault injection. Right after the RSA signature verification, the ROM
checks the ‘hash of hashes’ and the hash of the boot header. The corresponding
assembly code is constructed such that, upon hash mismatch, a single ‘load-
bearing’ mov instruction changes the return value in both cases, as shown in
Figure [6] If this mov instruction were to be faulted, both hash checks can be
skipped. This however still leaves the second-stage payload binary hashes in
place.

7 Practical exploitation

With the elements from the previous sections, we can now devise an exploitation
method. Once this exploit has been tested, we can design a cheap modchip that
performs the attack. We then select suitable crowbar MOSFETSs and perform
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NANDboot_RSA_verify(&rsa_verif_outbuf,boothdr_NAND) ;

// = return value not checked! rsa_verif_out in .bss

if (!NANDboot_check_boothdr_shal_hashes(&rsa_verif_out,boothdr_NAND)) {
ipc_notifyID(0xf);
return -2;

}

// continue. ..

(a) Part of the NANDboot_do_verify header ARM9 boot ROM routine, which verifies
the RSA signature and the hashes inside the RSA message.

bool swi_RSA_Decrypt_Unpad(RSA_heap *heap,byte *dest,byte *src,byte *key)
{ // snip: local variable declarations
memset (dest_with_pad,0,0x80) ;
memset (unpad_output,0,0x80) ;
dest_ptrnfo.dst = (byte *)dest_with_pad;
dest_ptrnfo.src = src;
dest_ptrnfo.key = key;
if (swi_RSA_Decrypt (heap,&dest_ptrnfo,&lenout) &&
RSA_parse_padding((byte *)unpad_output,&len_unpad_out, (byte *)
— dest_with_pad,lenout, 0x80)) {
memcpy (dest ,unpad_output,len_unpad_out);
// if bad padding: not copied, dest is zero-initialized
return true;
}
return false;

}

(b) swi_RSA Decrypt_Unpad routine, called by NANDboot_RSA_verify

Fig.5: Code snippets of the ARM9 boot ROM showing how the ROM code
forgets to check whether the RSA signature had well-formed padding. If this is
not the case, it ends up using zero-initialized memory as the signature appendix.

13
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bool NANDboot_check_boothdr_shal_hashes(RSA_appendix *sig,NAND_boothdr *)
{ // snip...

result = true;

if (!swi_SHA1_Compare(sig->SHA1_boothdr,boothdr_digest)

|| 'swi_SHA1_Compare(sig->SHA1_hash_of_hash,all_flds_digest)) {
result = false; // skip this -> bypass both checks
}
return result;

}

Fig.6: Code snippets of the ARM9 boot ROM showing how the ROM’s checks
for both SHA1 hashes in the RSA message end up in the same code path. This
makes it such that only one instruction needs to be skipped in order to bypass
both hash checks. NANDboot_check boothdr_shal hashes is called by the code

in Figure [5a]

another parameter search. After this is done, we insert the modchip into the DSi
and evaluate the performance of this modchip.

7.1 Method

This attack uses a single injected fault to take control over both ARM cores.
When the attack succeeds, both boot ROMs are still mapped into the address
space. It works as follows:

1. Use fault injection to bypass both the boot header hash check and the ‘hash
of hashes’ check at once.

2. Set the load address of the second-stage ARMT7 binary (which gets loaded
first) to an ARMO stack address (in its DTCM, Data Tightly Coupled Mem-
ory). Let this binary be LZ-compressed, with the FIFO option enabled. This
will make the ARM7 send the decrypted, compressed binary to the ARM9
over the FIFO interface. The ARM9 then decompresses it and writes it to
the destination address in its own address space (i.e. the DTCM). This al-
lows an attacker to control return addresses (and thus the program counter)
of the ARM9. This all happens before the ARM9 has a chance to calculate
the hash of the decrypted and decompressed second-stage binary.

3. DTCM is marked as no-execute by the MPU. Thus, use ROP [33] to copy
the payload to ITCM (Instruction Tightly Coupled Memory, which is read-
write-execute), and jump to it. The attacker now fully controls the ARM9.

4. The ‘ARM7’ payload (running on the ARM9) uses the FIFO interface to
instruct the ARM7 to now load the next second-stage binary (meant for the
ARMO).

5. Set the load address of the second-stage ARM9 binary to an ARMYTY stack
address, and do not use compression for this binary.
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6. The ARM7 will load the decrypted ARM9 binary into its address space. It
intends to send it to the ARM9 by remapping the SRAM bank backing it. In-
stead, it will take over control of the ARM7. The ARMY7 stack is executable,
thus no further steps need to be taken. The attacker is now in control of
both cores, with the boot ROMs still mapped into memory.

This attack has been tested to work in melonDS and with the EMFI setup.
The following sections deal with how a modchip can be built using this attack.

7.2 Design

Before a PCB can be designed and firmware can be written, several questions
still need to be answered.

The first is the choice of the boot medium. A custom game cartridge — akin
to a flashcart — would be ideal in terms of practicality, but this is not possible:
compression cannot be used with a game cartridge, while the exploit relies on its
use. The eMMC memory is also not a possibility: modifying its contents in-situ
is difficult (it requires BGA rework skills). The final option is thus to use the
SPI flash as boot medium. Luckily, this IC resides on a daughterboard instead
of being directly soldered onto the motherboard. Replacing the daughterboard
with one with malicious contents is thus relatively easy.

This replacement daughterboard can thus serve as the modchip. For practi-
cality reasons, voltage glitching will have to be the fault injection mechanism,
EMFT or LFI modchips have never been made, as far as the authors know. This
can be done by using a crowbar MOSFET [19] on the 1.2V SoC core power
rail. As the Raspberry Pico was used in the ROM extraction setup, reusing the
RP2040 here is also a straightforward choice. Several other modchips use this
microcontroller as well |40, [39].

7.3 Evaluation

The modchip is capable of injecting faults successfully to take over both CPU
cores of the target. Though, the success rate is low enough that success occurs
roughly once every ten minutes. A photo of the modchip can be seen in Figure[7

The success rate could be increased by experimenting more with the setup,
such as using more different MOSFETSs, using MOSFET drivers, activating mul-
tiple MOSFETSs at once, and so on. Nintendo Switch modchips [39] use two
IRFHS8342 MOSFETS, for example. These are also positioned very close to the
supply rails, while here, it is placed on the modchip PCB.

8 Conclusion

The DSi used a much more ‘ad-hoc’ and ‘home-built’ security system compared
to the 3DS, with its custom signature format and lack of operating system being
able to enforce security boundaries. Nevertheless, it ended up being more difficult

15
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Fig. 7: A photo of the modchip installed on the target DSi. The modchip is placed
on top of the motherboard, in the front of the photo. The beige connector on the
modchip could be used to mount the WiFi board on top of the modchip. Though,
doing so would make it impossible to close the plastic shell of the console. The
loose SD card connector and breadboards are remnants from the boot ROM
extraction process. In this photo, the crowbar MOSFET has been placed on a
separate small breadboard as a workaround for signal integrity issues.
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to actually break, from finding an entrypoint to extracting and exploiting the
boot ROMs. This stands in contrast to the fact that, especially with its use of
outdated primitives, it looks much weaker on paper.

Though, this does not mean using the DSi’s security system in a different
context is a good idea: it is very specialized towards gaming, its main concern
is piracy. The security system depends on custom hardware features not present
in typical SoCs to achieve its security objectives. For example, the use of two
different CPUs with different memories working in tandem on the same task,
and the SCFG registers able to disallow games to access certain hardware. Getting
one of these elements slightly wrong would have had bad consequences. For new
designs, using trusted execution environments e.g. ARM TrustZone seems like a
better idea. These systems are much better understood and provide less room
for mistakes. Similarly, the boot ROM was hard to attack simply because it
has little attack surface. More modern devices typically implement a USB-based
‘recovery mode’ in their boot ROM, with all the consequences stemming from
implementing this complex protocol (see e.g. [11]).

Secondly, this work shows that second-order fault injection attacks on com-
plex SoCs are feasible without too much trouble. Such attacks should thus also
be part of the attacker model (when applicable), instead of dismissing them as
‘unfeasible’ or ‘impractical’.

Thirdly, countermeasures against such attacks are difficult to implement. As a
rather complex fault model is used to extract the ROM image, it cannot easily be
mitigated in software. Furthermore, as this work has shown second-order attacks
to be feasible, such countermeasures against simple models (such as instruction
skips) can also still be defeated. Similarly, ASLR, the typical countermeasure
against ROP, would be very difficult to implement in the context of a boot
ROM. Implementing code relocations would add more attack surface than it
would remove. Instead, countermeasures at a lower level need to be used: fault
detectors can detect FI attacks, builtin redundancy and error correction can
stop them, and microarchitectural security techniques such as CFI and pointer
authentication can stop ROP attacks as well. Finally, though, much of this work
was only possible thanks to [17], which only happened because the 3DS leaked
information about the security system of the DSi. Vendors leaking hardware
secrets is very difficult to defend against.

Overall, this work shows how to resurrect consoles with a broken eMMC chip
by breaking the security system. This was needed because normally, due to the
secure boot implementation, the console would not be able to boot with such a
broken component.

While in this setting, the user can still be seen as an attacker, it is not
necessarily a bad thing that the user can perform such attacks. This question
is relevant in the context of IoT security, where users may want to use such
attacks to disable features that harm their privacy or safety [29]. This is already
demonstrated by their reluctance to even let such devices be connected to the
Internet [27].
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An archive of the source code of the ROM extraction setup, modchip firmware
and exploit payload, can be found at
https://gitlab.ulyssis.org/pcy/dsi-hacking-stuff.
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